C2-C2 ⁱ	1.535 (2)	C6C6"	1.538 (3)
C3-031	1.252 (2)	C7072	1.253 (2)
C3-032	1.262 (2)	C7-071	1.258 (2)
C4041	1.257 (2)	C8081	1.254 (2)
C4—O42	1.2607 (14)	C8	1.254 (2)
C3-C1-C2	112.30 (9)	C7—C5—C6	111.67 (11)
C1-C2-C4	110.57 (10)	C8-C6-C6 ⁱⁱ	109.92 (13)
C1—C2—C2 ⁱ	110.72 (12)	C8—C6—C5	110.01 (10)
C4—C2—C2 ⁱ	109.69 (13)	C6 ⁱⁱ —C6—C5	111.83 (13)
O31—C3—O32	125.04 (12)	072—C7—071	122.99 (13)
031—C3—C1	118.74 (11)	O72—C7—C5	119.58 (12)
O32-C3-C1	116.22 (12)	071—C7—C5	117.43 (11)
O41-C4-O42	123.76 (12)	O81-C8O82	123.89 (13
041—C4—C2	118.42 (10)	O81-C8-C6	117.80 (11
O42—C4—C2	117.81 (11)	O82—C8—C6	118.29 (11)
031—C3—C1—C2	117.12 (13)	071—C7—C5—C6	55.0 (2)
C3-C1-C2-C2 ⁱ	177.27 (12)	C7—C5—C6—C6 ¹¹	177.63 (12
C3-C1-C2-C4	-60.95(13)	C7—C5—C6—C8	55.19 (14
C1-C2-C4-041	-68.07 (14)	C5-C6-C8-O81	-121.02 (13
Symmetry codes: (i)	~ 1 ~	(ii) - r - v - 1 - r	

Symmetry codes: (i) -x, 1 - y, -z; (ii) -x, -y, 1 - z.

Using the area detector system, cell dimensions were refined from 250 reflections selected from two regions 90° apart and 5° wide at $\kappa = 0^{\circ}$. For all compounds, the intensity standards were not measured by the area detector. Possible variations were checked by comparing intensities of common or symmetry-related reflections as they occurred during data collection. In this case, no variation was noted.

For all compounds, data collection: *MADNES* (Pflugrath & Messerschmidt, 1991); cell refinement: *MADNES*; data reduction: *MADNES*; program(s) used to solve structures: *SHELXS86* (Sheldrick, 1990); program(s) used to refine structures: *SHELXL93* (Sheldrick, 1993); molecular graphics: *PLA-TON92* (Spek, 1992*a*) and *PLUTON92* (Spek, 1992*b*)

The authors thank EPSRC and Professor M. Hursthouse (University of Wales, Cardiff) for the data collections.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: L11138). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Barnes, J. C. & Paton, J. D. (1988). Acta Cryst. C44, 758-760.
- Barnes, J. C., Paton, J. D., Blyth, C. S. & Howie, R. A. (1991). Acta Cryst. C47, 1888–1892.
- Bednowitz, A. L. & Post, B. (1966). Acta Cryst. 21, 566-571.
- Bernstein, J., Davis, R. E., Shimani, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1574.
- Brown, C. J. (1966). Acta Cryst. 21, 1-5.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-146.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.
- Jeffrey, G. A. & Saenger, W. (1994). Hydrogen Bonding in Biological Structures, pp. 111-117. Berlin: Springer.
- Pflugrath, J. W. & Messerschmidt, A. (1991). MADNES. Munich Area Detector (New EEC) System. Small Molecule Version EEC 11/09/89. Enraf-Nonius, Delft, The Netherlands.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1992a). PLATON92. Program for the Automated Analysis of Molecular Geometry. University of Utrecht, The Netherlands.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved Spek, A. L. (1992b). PLUTON92. Program for the Display and Analysis of Crystal and Molecular Structures. University of Utrecht, The Netherlands.

Acta Cryst. (1996). C52, 736–739

3,12-Dimesityl-6,8-dimethyl-5,10-dioxa-1,2,4,11-tetraazatricyclo[7.3.1.0^{2,6}]trideca-3,7,11-triene and 3,12-Dimesityl-6,8,13-trimethyl-5,10-dioxa-1,2,4,11-tetraazatricyclo-[7.3.1.0^{2,6}]trideca-3,7,11-triene

M. PIERROT,^{*a*} M. GIORGI,^{*a*} M. EL MESSAOUDI,^{*b*} A. HASNAOUI,^{*b*} M. EL AATMANI^c AND J. P. LAVERGNE^{*d*}

^aLBS-URA 1409, Centre Scientifique Saint-Jérôme C12, 13397 Marseille, France, ^bLaboratoire des Substances Naturelles et Hétérocycles, Faculté des Sciences, Université Cadi Ayyad, BP S15 Marrakech, Morocco, ^cLaboratoire de Chimie du Solide Minéral, Faculté des Sciences, Université Cadi Ayyad, BP S15 Marrakech, Morocco, and ^dLaboratoire de Synthèse et d'Etudes physicochimiques d'aminoacides et peptides, URA 468, Université de Montpellier II, 34095 Montpellier, CEDEX 5, France

(Received 21 June 1995; accepted 21 September 1995)

Abstract

X-ray crystallographic study of the title compounds, $C_{27}H_{32}N_4O_2$ and $C_{28}H_{34}N_4O_2$, respectively, allows us to establish the structures of the diadducts obtained from the condensation of nitrile oxides and 1,2-diazepines. The conformations of the five-, six- and seven-membered rings forming the tridecatriene are described.

Comment

As part of our program on the synthesis of bi- or triheterocyclic systems which have biological activity, we are studying cycloaddition reactions on sevenmembered heterocycles (Hasnaoui, El Messaoudi & Lavergne, 1985; El Messaoudi, Hasnaoui, El Mouhtadi, Goupil & Lavergne, 1988; Hasnaoui, Baouid & Lavergne, 1991; El Messaoudi, Hasnaoui, El Mouhtadi & Lavergne, 1992; Baouid, Benharref, Hasnaoui & Lavergne, 1994). In a recent publication (El Messaoudi, Hasnaoui & Lavergne, 1994; El Messaoudi, Hasnaoui, Lavergne & Pierrot, 1995), we have described, in particular, the 1,3-dipolar cycloadditions of the 1,2-diazepines (I) and (II) with nitrile oxides, which lead to the title compounds (III) and (IV), respectively. X-ray diffraction study of compounds (III) and (IV) allows us to assign, without ambiguity, a structure of type A.

Selected bond distances and angles (Table 2) show no significant differences between the two molecules: only two distances (C8—C9 and C9—O10) and one angle (C9—C13—N1) are slightly above the 3σ threshold. As can be seen in Fig. 1, the two mesityl groups are parallel, making angles of 2.0 (8) in (III) and 7.4 (5)° in (IV). The tridecadiene fragment is composed of

Fig. 1. *ORTEPII* (Johnson, 1976) drawings of the title molecules with heavy atoms represented as 50% probability ellipsoids and H atoms as spheres of arbitrary radii. Phenyl rings are numbered sequentially (C14–C19 and C20–C25) with the number of each methyl substituent being appended by A (see Table 1).

three rings, the central seven-membered ring sharing one bond (N2-C6) with the five-membered ring and one angle (N1—C13—C9) with the six-membered ring. The conformation of these rings is imposed by the double-bond system. In each of these rings, one (fiveor six-membered rings) or two (seven-membered ring) torsion angles are almost flat. The five-membered ring with the C6 atom out of the N2-C3-N4-O5 plane has an envelope conformation. The seven-membered ring is composed of a flat moiety C6-C7-C8-C9-C13 connected to a twist segment C13-N1-N2-C6 where the N1 and N2 atoms are located on the same side of the plane. In the six-membered ring the conjugated fragment due to the N11=C12 double bond is not N1-C12=N11-O10 (this torsion angle is equal to about 10° in both molecules) but C13-N1-C12=N11, which is connected to the twist segment N11-010-C9-C13.

Experimental

Crystallization was carried out at room temperature by adding a few drops of ethanol to a trichloromethane saturated solution.

Compound (III)

Crystal data $C_{27}H_{32}N_4O_2$ $M_r = 444.58$ Triclinic $P\overline{1}$ a = 10.169 (3) Å b = 8.748 (2) Å c = 15.254 (5) Å $\alpha = 104.45 (5)^{\circ}$ $\beta = 97.40 (5)^{\circ}$ $\gamma = 109.22 (5)^{\circ}$ $V = 1207 (1) Å^3$ Z = 2 $D_x = 1.223 \text{ Mg m}^{-3}$

Data collection Enraf-Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: none 3992 measured reflections 3775 independent reflections 2462 observed reflections $[I > 3\sigma(I)]$

Refinement

Refinement on F R = 0.041 wR = 0.054 S = 1.842462 reflections 394 parameters H atoms: see below $w = 1/\sigma^2(F)$ Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 12-14^{\circ}$ $\mu = 0.073$ mm⁻¹ T = 293 K Prismatic $0.3 \times 0.2 \times 0.2$ mm Colourless

 $R_{int} = 0.025$ $\theta_{max} = 24^{\circ}$ $h = -11 \rightarrow 11$ $k = -10 \rightarrow 10$ $l = 0 \rightarrow 17$ 3 standard reflections frequency: 60 min intensity decay: 1%

 $(\Delta/\sigma)_{max} = 0.01$ $\Delta\rho_{max} = 0.243 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

C27H32N4O2 AND C28H34N4O2

Compound (IV)		C19A	0.3759 (3)	0.3124 (3)	0.3459 (2)	4.65 (7)
Crystal data		C20	0.0787 (2)	-0.4401 (3)	0.1712 (2)	3.14 (5)
erystat data		C21	0.0691 (3)	-0.5924 (3)	0.1880 (2)	4.09 (6)
$C_{28}H_{34}N_4O_2$	Mo $K\alpha$ radiation	C21A	-0.0043 (3)	-0.6504 (3)	0.2600 (2)	5.33 (8)
$M_{\rm r} = 458.61$	$\lambda = 0.71073 \text{ Å}$	C22	0.1313 (3)	-0.6930 (3)	0.1364 (2)	5.61 (7)
Triclinic	Call parameters from 25	C23	0.1988 (3)	-0.6466 (3)	0.0700 (2)	6.10 (8)
	Cen parameters nom 25	C23A	0.2578 (4)	-0.7642 (5)	0.0102 (3)	10.7 (1)
	reflections	C24	0.2057(3)	-0.4956 (4)	0.0532(2)	5.32 (7)
a = 9.894 (3) A	$\theta = 12 - 14^{\circ}$	C25	0.1462 (2)	-0.3900 (3)	0.1034(2)	3.89 (6)
b = 9.908 (3) Å	$\mu = 0.072 \text{ mm}^{-1}$	CZJA	0.1327(3)	-0.2311 (3)	0.0807 (2)	4.30(7)
c = 14.780 (5) Å	T = 293 K	Compo	und (IV)			
$\alpha = 105.29 (5)^{\circ}$	Prismatic	05 '	0.2148 (2)	-0.0324 (2)	0.5084(1)	4.55 (4)
$\beta = 94.07.(5)^{\circ}$	08 x 06 x 03 mm	O10	-0.2301(1)	-0.3428(2)	0.2484 (1)	4.65 (4)
p = 112.20 (5) ⁹		N1	0.0776 (2)	-0.2056(2)	0.2881(1)	3.21 (4)
$\gamma = 112.20(3)$	Colourless	N2	0.1917 (2)	-0.1932 (2)	0.3584 (1)	3.28 (4)
V = 1270 (1) A ³		N4	0.3300 (2)	0.0442 (2)	0.4644 (1)	4.45 (5)
Z = 2		N11	-0.1479 (2)	-0.4201 (2)	0.2015(1)	4.00 (4)
$D_r = 1.199 \text{ Mg m}^{-3}$		C3	0.3132 (2)	-0.0454 (2)	0.3806(1)	3.62 (5)
- x		C6	0.1581 (2)	-0.1953 (2)	0.4536(1)	3.72 (5)
Data callection		C6A	0.2548 (2)	-0.2588 (3)	0.4976 (2)	5.03 (6)
Dala collection		C7	-0.0013 (2)	-0.2773 (2)	0.4601 (2)	4.11 (6)
Enraf–Nonius CAD-4	$R_{\rm int} = 0.032$	C8	-0.1289 (2)	-0.2936 (2)	0.4126 (2)	4.22 (6)
diffractometer	$\theta_{\rm max} = 24^{\circ}$	C8A	-0.2744 (3)	-0.3965 (3)	0.4306 (2)	6.45 (8)
A/2A scaps	b = 11 + 11	C9	-0.1494 (2)	-0.2231 (2)	0.3379 (2)	4.15 (5)
	$n = -11 \rightarrow 11$	C12	-0.0052 (2)	-0.3554 (2)	0.2272 (1)	3.26 (5)
Absorption correction:	$k = -11 \rightarrow 11$	C13	-0.0077(2)	-0.1150 (2)	0.3185 (2)	3.92 (5)
none	$l = 0 \rightarrow 18$	C13A	-0.0381(3)	-0.0473 (3)	0.2425 (2)	5.64 (7)
4125 measured reflections	3 standard reflections	C14	0.4062 (2)	-0.0036 (3)	0.3106 (2)	4.49 (6)
3950 independent reflections	frequency: 60 min	C154	0.4/33(2)	-0.0999 (3)	0.2660 (2)	5.22(7)
2538 observed reflections	intensity doosw 1.6%	CISA	0.4625 (2)	-0.2390(3)	0.2926 (2)	5.75(7)
	intensity decay. 1.0%	C10	0.5572(3)	-0.0387(4)	0.1967(2) 0.1740(2)	7.4(1)
$[I > 3\sigma(I)]$		C174	0.5784 (5)	0.0731(4) 0.1125(6)	0.1749(2) 0.1000(2)	0.4 (1) 12 4 (2)
		C18	0.5165 (3)	0.1123(0)	0.1000(2) 0.2220(2)	7 42 (9)
Refinement		C19	0.5103(3) 0.4303(3)	0.1333(3)	0.2220(2) 0.2897(2)	5 49 (7)
Definiment on F	(A/-) < 0.001	C19A	0.3709(3)	0.1333(3) 0.2452(3)	0.2077(2)	6 88 (8)
	$(\Delta/\sigma)_{\rm max} < 0.001$	C20	0.0767(2)	-0.4423(2)	0.1782(1)	3 57 (5)
R = 0.040	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm A}^{-3}$	C21	0.0793 (2)	-0.5682(2)	0.2025(2)	4.35 (6)
wR = 0.053	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$	C21A	0.0036 (3)	-0.6190(3)	0.2793(2)	5.81 (7)
S = 1.85	Extinction correction: none	C22	0.1570 (3)	-0.6459(3)	0.1541 (2)	6.07 (7)
2538 reflections	Atomic scattering factors	C23	0.2303 (3)	-0.6019(3)	0.0840 (2)	6.89 (8)
400 poromotors	from Internetic al T	C23A	0.3146 (4)	-0.6896 (4)	0.0318 (3)	11.7 (1)
409 parameters	from International Tables	C24	0.2249 (3)	-0.4784 (3)	0.0609 (2)	6.10 (8)
H atoms: see below	for X-ray Crystallography	C25	0.1486 (2)	-0.3964 (3)	0.1069 (2)	4.47 (6)
$w = 1/\sigma^2(F)$	(1974, Vol. IV)	C25A	0.1434 (3)	-0.2651 (3)	0.0769 (2)	5.78 (7)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\mathring{A}^2)

Table 2. Selected bond lengths (A) and angles (°)

isotropic a	lisplacement d	parameters (A	(²)		(111)	(1V)				
1	1		- /	N1—N2	1.424 (3)	1.426 (2)				
$B_{eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a^*a^*a_j a_j,$			N2—C3	1.435 (2)	1.434 (2)					
•4	• • • • • •	, ₁ , i , i , i , i , i , i , i , i , i ,		C3N4	1.269 (3)	1.276 (3)				
x	у	Ζ	B_{eq}	N405	1.427 (3)	1.418 (2)				
und (III)				O5—C6	1.461 (2)	1.462 (2)				
0.2462 (2)	-0.0139 (2)	0.5009(1)	3.83 (4)	C6—C7	1.503 (3)	1.500 (3)				
-0.1943 (2)	-0.2830(2)	0.2469 (1)	3.82 (4)	C7—C8	1.329 (4)	1.332 (3)				
0.1016 (2)	-0.1713 (2)	0.2846(1)	2.64 (4)	C8—C9	1.510 (4)	1.493 (4)				
0.2111 (2)	-0.1779 (2)	0.3502(1)	2.76 (4)	C9-010	1.438 (2)	1.449 (2)				
0.3565 (2)	0.0708 (2)	0.4608 (1)	3.61 (5)	O10-N11	1.417 (3)	1.414 (3)				
-0.1259 (2)	-0.3819 (2)	0.1974 (1)	3.37 (5)	N11-C12	1.284 (3)	1.288 (3)				
0.3323 (2)	-0.0202 (3)	0.3770 (2)	2.91 (5)	C12—N1	1.399 (2)	1.399 (2)				
0.1817 (2)	-0.1908 (3)	0.4409 (2)	3.22 (5)	N1-C13	1.456 (3)	1.461 (3)				
0.2682 (3)	-0.2839 (3)	0.4768 (2)	4.50 (7)	N2-C6	1.476 (3)	1.473 (3)				
0.0279 (2)	-0.2672 (3)	0.4454 (2)	3.51 (6)	C9-C13	1.501 (3)	1.510 (3)				
-0.0929 (2)	-0.2621 (3)	0.4035 (2)	3.31 (6)							
-0.2338 (3)	-0.3680 (3)	0.4180 (2)	4.58 (7)	C13—N1—N2	116.6 (2)	117.3 (1)				
-0.1092 (2)	-0.1656 (3)	0.3361 (2)	3.35 (5)	N1-N2-C6	117.8 (2)	117.8 (2)				
0.0110(2)	-0.3303 (3)	0.2222 (1)	2.83 (5)	N2-C6-C7	117.6 (2)	117.6 (2)				
0.0293 (2)	-0.0586(3)	0.3202 (2)	3.08 (5)	C6—C7—C8	133.5 (2)	132.7 (2)				
0.4165 (2)	0.0314 (3)	0.3100 (2)	3.08 (5)	C7—C8—C9	127.2 (2)	127.6 (2)				
0.4794 (2)	-0.0746 (3)	0.2630(2)	3.45 (6)	C8-C9-C13	114.4 (2)	115.3 (2)				
0.4725 (2)	-0.2365 (3)	0.2832 (2)	4.23 (6)	C9-C13-N1	107.7 (2)	105.9 (2)				
0.5519(2)	-0.0264 (3)	0.1979 (2)	4.28 (7)	C6—N2—C3	102.1 (1)	101.7 (1)				
0.5655 (3)	0.1235 (3)	0.1774 (2)	4.33 (7)	N2-C3-N4	114.4 (2)	114.1 (2)				
0.6397 (3)	0.1703 (4)	0.1032 (2)	6.17 (9)	C3—N4—O5	107.7 (1)	108.0 (1)				
0.5065 (3)	0.2283 (3)	0.2270 (3)	4.28 (7)	N4C6	106.1 (2)	105.6 (1)				
0.4328 (2)	0.1873 (3)	0.2935 (2)	3.48 (6)	O5-C6-N2	103.0 (2)	103.3 (2)				
	$B_{eq} = \frac{x}{B_{eq}} = \frac{x}{1000}$ und (III) 0.2462 (2) -0.1943 (2) 0.1016 (2) 0.3565 (2) 0.3565 (2) 0.3565 (2) 0.1259 (2) 0.3233 (2) 0.1817 (2) 0.2682 (3) 0.0279 (2) -0.0929 (2) -0.0929 (2) 0.0110 (2) 0.0110 (2) 0.0293 (2) 0.4165 (2) 0.4725 (2) 0.5519 (2) 0.5565 (3) 0.5065 (3) 0.4328 (2)	$B_{eq} = (8\pi^2/3) \sum_i \sum_j U_i$ $B_{eq} = (8\pi^2/3) \sum_i \sum_j U_i$ und (III) $0.2462 (2) -0.0139 (2)$ $-0.1943 (2) -0.2830 (2)$ $0.1016 (2) -0.1713 (2)$ $0.2111 (2) -0.1779 (2)$ $0.3565 (2) 0.0708 (2)$ $-0.1259 (2) -0.3819 (2)$ $0.3323 (2) -0.0202 (3)$ $0.1817 (2) -0.1908 (3)$ $0.2682 (3) -0.2839 (3)$ $0.0279 (2) -0.2672 (3)$ $-0.0929 (2) -0.2672 (3)$ $-0.0929 (2) -0.2672 (3)$ $-0.0929 (2) -0.2672 (3)$ $-0.0929 (2) -0.2661 (3)$ $-0.1092 (2) -0.1656 (3)$ $0.0110 (2) -0.3303 (3)$ $0.0293 (2) -0.0586 (3)$ $0.4165 (2) 0.0314 (3)$ $0.4724 (2) -0.0746 (3)$ $0.4725 (2) -0.2655 (3)$ $0.5519 (2) -0.0264 (3)$ $0.5655 (3) 0.1235 (3)$ $0.5065 (3) 0.2283 (3)$ $0.4288 (2) 0.1873 (3)$	$\begin{array}{c c} solropic displacement parameters (A\\ B_{eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_j^* a_i.a_j.\\ x y z\\ und (III)\\ 0.2462 (2) -0.0139 (2) 0.5009 (1)\\ -0.1943 (2) -0.2830 (2) 0.2469 (1)\\ 0.1016 (2) -0.1713 (2) 0.2846 (1)\\ 0.2111 (2) -0.1779 (2) 0.3502 (1)\\ 0.3565 (2) 0.0708 (2) 0.4608 (1)\\ -0.1259 (2) -0.3819 (2) 0.1974 (1)\\ 0.3323 (2) -0.0202 (3) 0.3770 (2)\\ 0.1817 (2) -0.1908 (3) 0.4409 (2)\\ 0.2682 (3) -0.2839 (3) 0.4768 (2)\\ -0.0299 (2) -0.2672 (3) 0.4454 (2)\\ -0.0929 (2) -0.2672 (3) 0.4458 (2)\\ -0.0929 (2) -0.2672 (3) 0.4458 (2)\\ -0.1092 (2) -0.1656 (3) 0.3361 (2)\\ 0.0110 (2) -0.0586 (3) 0.3202 (2)\\ 0.4165 (2) 0.0314 (3) 0.2832 (2)\\ 0.4725 (2) -0.0264 (3) 0.1979 (2)\\ 0.5519 (2) -0.0264 (3) 0.1979 (2)\\ 0.5655 (3) 0.1235 (3) 0.2770 (3)\\ 0.4734 (2) 0.0283 (3) 0.2270 (3)\\ 0.4328 (2) 0.1873 (3) 0.2270 (3) \end{array}$	Isolropic displacement parameters (A^2) $B_{eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_i^* a_i.a_j.$ x y z B_{eq} und (III) 0.2462 (2) -0.0139 (2) 0.5009 (1) 3.83 (4) -0.1943 (2) -0.2830 (2) 0.2469 (1) 3.82 (4) 0.1016 (2) -0.1713 (2) 0.2846 (1) 2.64 (4) 0.2111 (2) -0.1779 (2) 0.3502 (1) 2.76 (4) 0.3565 (2) 0.0708 (2) 0.4608 (1) 3.61 (5) -0.1259 (2) -0.3819 (2) 0.1974 (1) 3.37 (5) 0.3323 (2) -0.0202 (3) 0.3770 (2) 2.91 (5) 0.1817 (2) -0.1908 (3) 0.4409 (2) 3.22 (5) 0.2682 (3) -0.2839 (3) 0.4768 (2) 4.50 (7) 0.0279 (2) -0.2672 (3) 0.4454 (2) 3.51 (6) -0.0929 (2) -0.2672 (3) 0.4454 (2) 3.51 (6) -0.0929 (2) -0.2661 (3) 0.3361 (2) 3.35 (5) 0.0110 (2) -0.3303 (3) 0.2222 (1) 2.83 (5) 0.0293 (2) -0.0586 (3) 0.3202 (2) 3.08 (5) 0.4165 (2) 0.0314 (3) 0.3100 (2) 3.08 (5) 0.4165 (2) -0.0314 (3) 0.2100 (2) 3.08 (5) 0.4794 (2) -0.0746 (3) 0.2630 (2) 4.23 (7) 0.4725 (2) -0.0264 (3) 0.1979 (2) 4.28 (7) 0.5655 (3) 0.1235 (3) 0.1774 (2) 4.33 (7) 0.6397 (3) 0.1703 (4) 0.1032 (2) 6.17 (9) 0.5065 (3) 0.2283 (3) 0.2270 (3) 4.28 (7) 0.4328 (2) 0.1873 (3) 0.22935 (2) 3.48 (6)	$\begin{array}{c c} \text{isolropic displacement parameters } (A^2) \\ \hline B_{eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_i^* a_i.a_j. \\ \hline N1-N2 \\ B_{eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_i^* a_i.a_j. \\ \hline N2-C3 \\ C3-N4 \\ \hline N2-C3 \\ C3-N4 \\ \hline N4-O5 \\ O5-C6 \\ O5-C6$	(111)(111) $B_{eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_j^* a_i . a_j.$ (111)N1—N21.424 (3) N_2 —C31.424 (3) N_2 —C31.427 (3) O_2 = 0.0139 (2)0.5009 (1)3.83 (4)C6—C71.503 (3) $-0.1943 (2)$ $-0.2830 (2)$ $0.2846 (1)$ 2.64 (4)C8—C91.510 (4) $0.1016 (2)$ $-0.1779 (2)$ $0.3502 (1)$ $2.76 (4)$ C8—C91.510 (4) $0.3323 (2)$ $-0.0708 (2)$ $0.4456 (2)$ $0.10-N11$ $1.417 (3)$ $-0.1259 (2)$ $-0.3819 (2)$ $0.3770 (2)$ $2.91 (5)$ $C12-N1$ $1.399 (2)$ $0.1817 (2)$ $-0.2839 (3)$ $0.4768 (2)$ $3.51 (6)$ $-0.1908 (3)$ $0.3222 (5)$ $N1-N2$ $116.6 (2)$ $-0.1908 (3)$ $0.3202 (2)$ $3.35 (5)$ $N1-N2$ $16.6 (2)$ <th <="" colspan="4" td=""></th>				

738

C13-C9-O10	107.0 (2)	107.6 (2)
C9-010-N11	114.7 (2)	114.9(1)
O10-N11-C12	118.0(1)	117.7 (1)
N11-C12-N1	125.4 (2)	125.5 (2)
C12-N1-C13	114.7 (2)	115.5 (1)

 Table 3. Torsion angles (°) and distances (Å) to the plane

 fragments

		(III)	(IV)
O5N4C3N2		-2.9 (3)	-2.5 (2)
C13—N1—C12—N11		-1.7 (3)	-4.3 (3)
C6C7C8C9		-2.0(4)	-3.6 (4)
C7—C8—C9—C13		-3.2 (3)	-3.3 (3)
		Distance of atom to plane	
Fragment	Atom	(III)	(IV)
N2-C3-N4-O5	C6	-0.391 (2)	-0.405 (2)
C13-N1-C12-N11	C9	-0.866 (2)	-0.884(2)
C13-N1-C12-N11	O 10	-0.257 (2)	-0.287(1)
C6C7C8C9C13	NI	1.111 (2)	1.117 (2)
C6C7C8C9C13	N2	0.855 (2)	0.885 (2)

Structure solution was completed by Fourier synthesis. H atoms were introduced at idealized positions in the calculations before the last refinement cycle but not refined. Refinement was by full-matrix least-squares methods including anisotropic displacement parameters for all non-H atoms. Despite the large differences in cell parameters [*e.g.* b = 8.748 (3) in (III) and 9.908 (3) Å in (IV)], the two crystals are isostructural and the crystal structure of (IV) was obtained directly from the coordinates of (III) refined with the X-ray intensities measured on the crystal of (IV).

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structures: MULTAN11/82 (Main et al., 1982); program(s) used to refine structures: SDP-Plus (Frenz, 1985); molecular graphics: ORTEPII (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1199). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Baouid, A., Benharref, A., Hasnaoui, A. & Lavergne, J. P. (1994). Bull. Soc. Chim. Belg. 103, 743-751.
- El Messaoudi, M., Hasnaoui, A., El Mouhtadi, M. & Lavergne, J. P. (1992). Bull. Soc. Chim. Belg. 101, 977-985.
- El Messaoudi, M., Hasnaoui, A., El Mouhtadi, M., Goupil, J. M. & Lavergne, J. P. (1988). J. Heterocycl. Chem. 25, 453-457.
- El Messaoudi, M., Hasnaoui, A. & Lavergne, J. P. (1994). Synth. Commun. 24, 513-520.
- El Messaoudi, M., Hasnaoui, A., Lavergne, J. P. & Pierrot, M. (1995). Synth. Commun. In the press.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Hasnaoui, A., Baouid, A. & Lavergne, J. P. (1991). J. Heterocycl. Chem. 28, 73-76.
- Hasnaoui, A., El Messaoudi, M. & Lavergne, J. P. (1985). Recl Trav. Chim. Pays-Bas, 104, 129–131.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J. P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.

Acta Cryst. (1996). C52, 739-743

cis,trans-4,5-Diphenyl-1,3,2-dioxathiolane 2-Oxide, *cis,cis*-4,5-Diphenyl-1,3,2-dioxathiolane 2-Oxide and 4,4-Diphenyl-1,3,2dioxathiolane 2-Oxide

DESMOND G. HELLIER* AND MAJID MOTEVALLI

Chemistry Department, Queen Mary and Westfield College, Mile End Road, London El 4NS, England

(Received 29 July 1993; accepted 18 September 1995)

Abstract

All three title compounds, $C_{14}H_{12}O_3S$, adopt half-chair (envelope) conformations with the S==O group and the phenyl groups in pseudoaxial and pseudoequatorial positions, respectively. The steric effects of the phenyl groups are discussed in terms of S-O/C-O bond lengths and ring torsion angles.

Comment

The conformational analyses of methyl- and phenyl-1,3,2-dioxathiolane 2-oxides (methyl- and phenylethylene sulfites) have been thoroughly investigated by IR and ¹H and ¹³C NMR solution studies (Hellier & Green, 1973*a*,*b*). It was concluded that rapid interconversion between various envelope forms is possible but is restricted to that involving rotation about the C—C bond. Complete pseudorotatory circuits around the ring are prevented by the relatively high potential barrier imposed by the sulfite group.

The crystal structure determinations of *trans*-4(S)-phenyl-1,3,2-dioxathiolane 2-oxide, (IV), and *trans,trans*-4,5-diphenyl-1,3,2-dioxathiolane 2-oxide, (V), have been reported previously (Lowe, Jones & Salamone, 1984) and fully confirm the half-chair conformation of these compounds.

In view of our interest in cyclic sulfites and the fact that neither the molecular structures of five-membered ring sulfites nor the effect of substituent groups have yet been studied in detail, we decided to investigate the structures of *cis*, *trans*-4,5-diphenyl-1,3,2-dioxathiolane 2-oxide, (I), *cis*, *cis*-4,5-diphenyl-1,3,2-dioxathiolane 2-